![]() ![]() ![]()
From |
![]() It is the star to every wandering bark, Light Pollution Hurts the Night Sky for AstronomyCoverage in this page includes:
The Incredible Journey of StarlightTypical starlight has a very difficult and violent birth. Its parental atomic particles must have existed in an incredible furnace, with temperatures of at least 10 million Kelvin and central densities around twenty times that of iron, called a star's core. Only in those extreme temperatures and pressures, will these parental, positively charged particles be able to overcome their mutually repulsive electromagnetic forces and slam into each other at speeds of a few hundreds of kilometers per second. In doing so, they will lose a little bit of themselves, in the form of their combined mass. By Einstein's famous equation: E = mc2, their missing mass becomes a gamma ray photon that pops into existence. As the stellar core is made of completely ionized gases, known as plasma, no electrons orbit any atomic nuclei, thus no atoms exist there that can capture and consume the newly conceived photon. But it does bang into other charged particles, new nuclei or free electrons that can convert its energy into higher velocities before expelling it again, and over and over It journeys on, passing through the core, whose densities quickly plunge as the photon nears its surface, and out to the next region in less than a second. However, outside the core, lies a hostile jungle to the photon, it begins with the so called "radiation zone" of a star. Here, temperatures start to fall down to around eight million Kelvin. In this "cooler domain", electrons can now be electromagnetically bound to nuclei and together, temporarily become atoms. These atomic beasties devour all the gamma ray photons that the core produces, regurgitating them into ever more numerous, less energetic photons, over and over again. In this process, the initial gamma ray photon will have rapidly split up and multiplied into many generations of photons. The photon generations make their way through the radiation zone until they come to the convection zone, where temperatures are now a much cooler two million Kelvin. The region's density drops considerably, freeing the atoms to move about. Here the photon generations are wholly consumed by the atoms which become caught up in the currents of the convective cells. The atoms rise up in currents of hot gases only to collide into cooler currents from above, causing them to release some of their captured energies as they then fall back down into the inner, hotter layers. In this way, the photon energies ride up and down the convective currents in sort of near endless, partner exchanging, square dance of layers of loop-de-loops. In our Sun's case, these loops range from 30,000 km in diameter, starting at 200,000 km below the photosphere, to every smaller circuits of 1,000 km in diameter just under the photosphere. All the while, the stellar atoms split the photons into a pattern of energies that is a signature of their elemental compositions. By the time the extreme energy from the initial gamma ray photon reaches the photosphere, it will have descended into millions of non-ionizing, weaker, visible photons, ending their gestation period and a million years will have passed. At the photosphere layer, the medium's density is so low, it becomes optically transparent and those visible photons will then quickly pass through the stellar atmosphere. Here some of the atoms in the stellar chromosphere will have their last chance to capture photons of choice energies, preventing their release. The remaining photons that escape through that atmosphere, the majority that do not have such particular energies for capturing, will finally burst free of the star. And the starlight is born. The starlight photon journeys onwards through space at the exacting speed of nearly 300,000 kilometers per
second, the legendary In as little as 1/3,000ths of a single second, these photons will get buffeted about by pockets of air of varying temperatures. Only then does the starlight end its journey in its final location into the back of our eyes and appear as a little twinkling sparkle in the sky. That when we see it, it calls to our mind a simple little poem by Jane Taylor (1783–1824) and makes us wonder what they are. That is IF we can make it out against the confusing, and ever growing, luminous fog of artificial man-made photons called light pollution. Our Birthright, Stolen by "Progress"First, a question for you: Have you ever seen the wondrous band of light across the night sky called the Milky Way?
The 1994 Los Angeles-Northridge Earthquake -- The above statement is not at all overly dramatic. It
is a growing trend. The National Institute of Health's issue of the January 2009 Environmental Health Perspectives Journal
included a story from the 1994 Northridge earthquake which had knocked out the power in Los Angeles. Apparently local emergency
centers then had received numerous calls from anxious residents reporting a Ed Krupp, the director of the Griffith Observatory in Los Angeles, had reported that many callers did not
want to believe that what they saw when the power was out really was the normal, unpolluted, appearance of the night sky. He has
said that An example of this from around here in South Florida is that during the night time, clouds are bright white, when in fact they should appear black against a black sky. I am amazed of how many of our visitors seem surprised by that fact, when I tell them it. Try to see a faint nebula, a comet or recognize a constellation against such competition and you'll realize why the first science, astronomy, is slipping away from people's consciousness. Please read on, for we seem to be determined to increase our blinded forgetfulness. A nice thing about this "save the ..." effort is that it is something that anyone can do, such as make a one-time adjustment to your outside lights, and probably never need to anything else about it again. It really can be that easy. "When you look at the night sky, you realize how small we are within the cosmos. It's kind of resetting of your ego. To deny yourself of that state of mind, either willingly or unwittingly, is to not live to the full extent of what it is to be human." "I hear that it is an imperfect copy that I possess and have read, that my ancestors have torn out many of the first leaves and grandest passages, and mutilated it in many places. I should not like to think that some demigod had come before me and picked out some of the best of the stars. I wish to know an entire heaven and an entire earth." "Many people who come to our programs have never really looked at the night sky. A woman once came up to me and said, 'The Moon was out during the day this morning - is that O.K.?'" (Note: for the record, the Moon is out during the day half the time of every month. We just don't notice as much because the day time sky is so bright and that we are looking at its dark night side, so it is not lit by the Sun. However, if you look at it soon after sunset when it is a very thin crescent shape, you may be able to see its night side! This is called "Da Vinci light", because it was the great artist Leonardo himself that figured out that the Moon's night side was being illuminated by the bright full Earth! Astronomy, Our Perceptions of Light, and the Impact of Light Pollution
Brightness -- Stars vary in their perceived brightness, not just because of their different distances,
but also because their varied outputs. The differences in brightness are described by the star's magnitudes, the larger the
magnitude's value, the dimmer the star appears. While this may sound backwards, the reason is historical. In 134 B.C. a new star
appeared in Scorpio. So, Hipparchus, a Greek astronomer, made a new catalog the stars. He recorded 1080 stars, by latitude and
longitude and defined them into orders of brightness. This catalogue was the basic standard reference for the next sixteen
centuries. (A Short History of Astronomy, Arthur Berry, 1898, Dover Publication, Inc. New York, 1961 Edition). 280 years
after Hipparchus, Ptolemy, another Greek scientist, gave them numerical values of magnitude to the stars did so according to their
This means that as our eyes perceive brightness on a logarithmic scale, then doubling the amount of light is only perceived by us to just be a small increment or change in the light's magnitude. This is one of the reasons why increasing the amount of light often produces such futile results. at the same rate as its electrical costs' increase.
As to help illustrate the last point of the Limiting Apparent Magnitude of sky conditions, below is a nice graphic from Gizmodo.com about the differences in the number of stars that can be seen due to varying levels of background light pollution. Click on it to follow it to the original article. Lights on places to make a difference in the quality of life for so many people around it. ![]() Is the closing of the sky a symbol of the closing of the urban mind? We are living in an era that has no great vision for any civilization other than commerce in China and India. Is humility an important ingredient in pushing mankind forward, does it beget the necessary ingredients of an advanced society, a vision? Yes I think so. As more and more people get closer together all that pollution of light and air dissolves any greater vision, and self obsession takes its place. Here are two papers that look into these aspects a bit more than the above. The first sought to further pin down what light effects our biological clocks and what is the light's receptors. The second covered the effect of light on the eyes of mammals. These are followed by a report by the International Dark Sky Association about the impacts of while light LEDs. Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian PhotoreceptorSource: The Journal of Neuroscience, August 15th, 2001, Vol. 21, Issue 16, pgs 6405-6412. George C. Brainard1, John P. Hanifin1, Jeffrey M. Greeson1, Brenda Byrne1, Gena Glickman1, Edward Gerner1, and Mark D. Rollag2 1Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
The researchers believe that, in humans, a new single photopigment may be primarily responsible for melatonin suppression. They believe this for the pigment's peak spectral absorbing region does not match the peaks of the rod and cone cell photopigments typically used for day or night vision. While they have not been given a name that is as easily learned as Effects of Artificial Night Lighting on Terrestrial Mammals.Source: Ecological Consequences of Artificial Night Lighting. Catherine Rich & Travis Longcore (eds). 2006. Island Press. Covelo, California. Pages 15-42. Northern Arizona University School of Forestry
The graph plots the ranges to at which systems in vertebrates respond to light. The large grey box plots the range of light intensities and the time they can effect rod and cone visual imaging systems. The blue box covers the range which affects the circadian system. There is little overlap between the two systems. To adjust a biological clock, a brighter light for a longer duration (30 seconds to 100 minutes) is needed than what is required to form an image. This protects the circadian system from being reset by brief flashes of light, such as lightning, which are not reliable indicators of time. The influence of light on the circadian clocks influences production of some hormones, notably melatonin, which mediates almost every physiological or behavioral rhythm in mammals (Bartness and Goldman. 1989. Mammalian pineal melatonin: a clock for all seasons. Experientia 45:939-945). In all species, melatonin production is high at night and suppressed during daytime, although reaction to melatonin often differs between diurnal and nocturnal species. Among its many roles, melatonin suppresses tumor growth by regulating production and tumor use of linoleic acid. More about this effect is listed in the light pollution verses mammals of our environmental pages and on human health pages. White Light LEDs are Problematic for Human Circadian Systems
LEDs have been around for some time now. So if energy efficiency was the only thing driving this change, then low-pressure sodium lights would have been replaced by yellow LEDs some time ago. But because of our preference to see the world in only daytime lighting levels and full daytime color, we seem to be rushing to embrace something that is not entirely the best for us. The International Dark-Sky Association has put out a white paper about these new lights and their analysis of them. Their graph to the right points out how well the new blue-rich LED lights would interfere with our circadian system and our ability to get a good night's sleep. Thus, care should be taken ensure that we are not harmed by our rush to progress. To help people make better lighting choices, so to improve all of our sleep, the environment and any viewing conditions of the heavens for yourself, your neighbor or someone miles away may want to enjoy, just remember this simple thought about the nighttime: BLUE BE BAD. So what does the light pollution do that is so bad? Astronomically, it
The light from the field is so bright that there is nothing in the sky that one can see above the field, with
the exception of a little orange ball to the right of the picture's middle. If you hover your mouse cursor over the image, you'll
be alerted to this little orange ball and find out it is the full moon, as taken on Sept. 13th, 2011. The field lights appear many
times brighter than the moon. Then consider that our eyes see light logarithmically, which means that if the field lights appear
that bright, then they are orders of magnitude brighter. The next image is of a newer field which has its lights pointed downwards; its light beams demonstrate their direction. Even though there are many more lights, some poorly oriented nearby and others in the distance (I-95 and the airport), our eyes and the cameras are not so stopped down that one can even see some of the distant clouds in the picture. The glints of light that bounce off some of the field's light shields are nowhere near as blazingly bright as the first field emits. Note that both fields are about equidistant from our dome, though they were taken on different nights. The highest happiness of man is to have probed what is knowable, and to quietly revere what is unknowable. Another result of light pollution is that is can help bring about civilization's death. Now first of all, I am the first to admit that this scenario is unlikely. However, even if it is an unlikely event, since it is such a catastrophic event, it needs to be said, because evidence from all over the world shows that it does happen. That event is extraterrestrial impact on the Earth. On June 30, 1908 at 7:14 a.m. local time, something happened in the atmosphere above the deep taiga forests of central Siberia near the Podkamennaya Tunguska River. "The sky split into two. Fire appeared high and wide over the forest... From... where the fire was, came strong heat... At that moment I became so hot that I couldn't bear it, as if my shirt was on fire... I wanted to tear off my shirt and throw it down, but then the sky shut closed, and a strong thump sounded, and I was thrown a few yards... After that such noise came, as if... cannons were firing, the earth shook." - Semen Semenov, local farmer. Semenov was 65 km (40 miles) from "ground zero". The sound was heard in 1400 km away and Londoners supposedly felt the wind from the event. Due to light reflected off of massive, silvery clouds, Londoners could also read newspapers at midnight without artificial lights.
To get a good feeling of what we have to deal with in our neighborhood in space, take a look at this YouTube video of Asteroid Discoveries and their pathes from 1980-2010 made by Scott Manley and please watch it all the way to the end. The orbital elements were taken from the 'astorb.dat' data created by Dr. Edward Bowell and associates at http://www.naic.edu/~nolan/astorb.html. the observation are supplied by The Minor Planet Center and the Lowell Observatory. The music is 'Transgenic' by Trifonic. Originally the numbers are quite small, but in the 1990s what survey automation we have starts to help find what it out there. The red objects are the Earth crossing asteroids and the ones that come most uncomfortably close to us. Note that there are errors of uncertainty in these orbits and little gravitational tugs by planets or by other asteroids that an asteroid comes nears to happen continuously. By choosing to remain blind to the ever changing, shooting gallery that we live in, means that we won't know to take action when the next one comes. The asteroid map at the right comes from Armagh Observatory. You can learn more about it at http://szyzyg.arm.ac.uk/~spm/neo_map.html. "Did you see all of the stars in the sky after hurricane Wilma!?!" What is sad about such statements is that the speakers typically say it as if what they saw was an exotic view, not what they should be able to see on any given night of the year. Please note: To fit the modern times we live in, here is a suggested updated version to an old poem. the last light I'll see tonight. I wish I may, I wish I might see the sky, that's hid from sight. The Growth of "Just Another Light ... "Light pollution is a hard concept to tackle as most people believe that light is benign and that one more additional light outside will not be noticed. This is not true. In some areas of the world, the growth of light pollution exceeds seven percent per year! That's a doubling of light pollution every ten years. And the steady growth of just another light takes its toll as the next article by Cinzano, Falchi, & Elvidge will show. The first World Atlas of the artificial night sky brightnessSource: Monthly Notices of the Royal Astronomical Society, 2001, Volume 328, Issue 3, Pages 689 - 707 P. Cinzano1,2, F. Falchi1,2, and C. D. Elvidge3 1Dipartimento di Astronomia, Università di Padova, vicolo dell'Osservatorio 5, I-35122 Padova, Italy Website: http://www.lightpollution.it/indexen.html
Note that I used the 1970 map from here to correlate with the map of breast cancer incidences by U.S. counties that Blot, Fraumeni, & Stone made back in 1977. The brightest regions, those with excessive amounts of light pollution such as cities, that Cinzano plotted match quite well with the counties that Blot mapped which had the greatest rates of breast cancer. Note that Blot, et al.'s map does not simply count higher numbers of breast cancer cases due to the higher populations, but it reports higher percentage rates of breast cancer in particular locations, which are these counties were printed darker than other regions. This is the result of ever more additional lights pointed upwards into the sky. The light pollution sources are numerous. Examples of poorly directed lights include:
Advertising: - There are those who say that the freedom of speech combined with the pursuit of profit ensures the creation of commercial advertising. Thus, they argue, we should just accept it. But we do not have to accept it. We can chose NOT to have shoved down our throats or into our minds someone else's continuous stream of commercials. Consider these videos of the result of more and more digital billboards. This video by ScenicAmerica focuses on the threats to our cities (and, I believe, our peace of mind) posed by uncontrolled outdoor advertising and commercialism. And the next is of what it would look like if electronic billboards look if they replaced static signs on our highways or roads. It seems to me that these sign down here are near locations of low income homes, as if they need yet another type of pollution dumped on them. Legislations need to be passed to prevent these signs from trying to bother us. So what lights could one use? First, think hard about whether the light really is even needed at all. Note that this asks to consider other people affected by the light, not just what you believe to be your own needs. Next, the best lights to use which our biological systems do not react to and does not interfere with astronomy are those that avoids the blue end of the spectrum, such as shielded low-pressure sodium lights. Their near monochromatic nature means that all of their light at a very narrow band of yellow wavelengths which does not typically occur in space and hence can easily be filtered out at the telescope. High-pressure sodium is next best. A large range of lights that overlap those colors produced by astronomical sources, such as those produced by white or bluish mercury fluorescents should be avoided. However, more important than the light's color is how and when the light is used. Shield the lights so that the light's source can not be directly seen from above its horizontal plane. And turn the lights off after 11 p.m. when folks are asleep anyway. Get a good night sleep, there are health reasons for this and dark nights are not as bad as a security risk as one may think. Florida Atlantic University Boca Raton, Florida E-mail: evandern at fau dot edu Phone: 561 297 STAR (7827) |
FAU telescope astronomy stars planets asteroids comets constellations star clusters nebula nova supernova Milky Way Andromeda Whirlpool galaxies college sky conditions light pollution Florida Palm Beach County Broward County Miami Dade County interest in astronomy how many stars star counts star amounts light pollution amounts led light harm culture great visions