CONTENTS IN BRIEF

PART 1 What Is Ecology? 1
CHAPTER 1 Introduction to the Science of Ecology 2
CHAPTER 2 Evolution and Ecology 17

PART 2 The Problem of Distribution: Populations 31
CHAPTER 3 Methods for Analyzing Distributions 32
CHAPTER 4 Factors That Limit Distributions: Dispersal 41
CHAPTER 5 Factors That Limit Distributions: Habitat Selection 57
CHAPTER 6 Factors That Limit Distributions: Interrelations with Other Species 71
CHAPTER 7 Factors That Limit Distributions: Temperature, Moisture, and Other Physical-Chemical Factors 86
CHAPTER 8 The Relationship Between Distribution and Abundance 106

PART 3 The Problem of Abundance: Populations 115
CHAPTER 9 Population Parameters 116
CHAPTER 10 Demographic Techniques: Vital Statistics 133
CHAPTER 11 Population Growth 157
CHAPTER 12 Species Interactions: Competition 179
CHAPTER 13 Species Interactions: Predation 206
CHAPTER 14 Species Interactions: Herbivory and Mutualism 235
CHAPTER 15 Species Interactions: Disease and Parasitism 258
CHAPTER 16 Population Regulation 280
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Applied Problems I: Harvesting Populations</td>
<td>305</td>
</tr>
<tr>
<td>18</td>
<td>Applied Problems II: Pest Control</td>
<td>331</td>
</tr>
<tr>
<td>19</td>
<td>Applied Problems III: Conservation Biology</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>PART 4 Distribution and Abundance at the Community Level</td>
<td>385</td>
</tr>
<tr>
<td>20</td>
<td>The Nature of the Community</td>
<td>386</td>
</tr>
<tr>
<td>21</td>
<td>Community Change</td>
<td>403</td>
</tr>
<tr>
<td>22</td>
<td>Community Organization I: Biodiversity</td>
<td>434</td>
</tr>
<tr>
<td>23</td>
<td>Community Organization II: Predation and Competition in Equilibrial Communities</td>
<td>459</td>
</tr>
<tr>
<td>24</td>
<td>Community Organization III: Disturbance and Nonequilibrium Communities</td>
<td>485</td>
</tr>
<tr>
<td>25</td>
<td>Ecosystem Metabolism I: Primary Production</td>
<td>513</td>
</tr>
<tr>
<td>26</td>
<td>Ecosystem Metabolism II: Secondary Production</td>
<td>537</td>
</tr>
<tr>
<td>27</td>
<td>Ecosystem Metabolism III: Nutrient Cycles</td>
<td>560</td>
</tr>
<tr>
<td>28</td>
<td>Ecosystem Health: Human Impacts</td>
<td>583</td>
</tr>
<tr>
<td></td>
<td>EPILOGUE</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>APPENDIX I</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>A Primer on Population Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPENDIX II</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td>Estimation of the Size of the Marked Population in Capture-Recapture Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPENDIX III</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>Instantaneous and Finite Rates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APPENDIX IV</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Species Diversity Measures of Heterogeneity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GLOSSARY</td>
<td>619</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>CREDITS</td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>SPECIES INDEX</td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>SUBJECT INDEX</td>
<td>680</td>
</tr>
</tbody>
</table>
PART 1 WHAT IS ECOLOGY? 1

CHAPTER 1 INTRODUCTION TO THE SCIENCE OF ECOLOGY 2
- Definition of Ecology
- History of Ecology
- Basic Problems and Approaches to Ecology
- Levels of Integration
- Methods of Approach to Ecology
- Application of the Scientific Method to Ecology
- Essay 1.1 Science and Values in Ecology
- Box 1.1 Scientific Method: Definitions of Terms
- Essay 1.2 On Ecological Truth
- Key Concepts
- Selected References
- Questions and Problems

CHAPTER 2 EVOLUTION AND ECOLOGY 17
- What Is Evolution?
- Adaptation
- Box 2.1 What Is Fitness?
- Clutch Size in Birds
- Coevolution
- Essay 2.1 Evolution and “Arms Races”
- Units of Selection
- Gametic Selection
- Kin Selection
- Group Selection
- Summary
- Key Concepts
- Selected References
- Questions and Problems
PART 2 THE PROBLEM OF DISTRIBUTION: POPULATIONS 31

CHAPTER 3 METHODS FOR ANALYZING DISTRIBUTIONS 32

- Transplant Experiments 32
- Essay 3.1 Liebig's Law of the Minimum 34
- Physiological Ecology 35
- Adaptation 36
- Summary 38
- Key Concepts 39
- Selected References 39
- Questions and Problems 39

CHAPTER 4 FACTORS THAT LIMIT DISTRIBUTIONS: DISPERSAL 41

- Examples of Dispersal 41
 - Zebra Mussel (Dreissena polymorpbis) 41
 - Gypsy Moth (Lymantria dispar) 42
 - Chestnut Blight (Cryphonectria parasitica) 44
 - California Sea Otter (Enhydra lutris) 45
- The Three Modes of Dispersal 46
- Essay 4.1 Ships, Ballast Water, and Marine Dispersal 47
- Box 4.1 Definition of Terms for Introduced Nonnative Species 50
- Colonization and Extinction 50
- Evolutionary Advantages of Dispersal 53
- Summary 55
- Key Concepts 55
- Selected References 56
- Questions and Problems 56

CHAPTER 5 FACTORS THAT LIMIT DISTRIBUTIONS: HABITAT SELECTION 57

- Behavioral Mechanisms of Habitat Selection 57
- Evolution of Habitat Preferences 65
- A Theory of Habitat Selection 67
- Summary 69
- Key Concepts 69
- Selected References 69
- Questions and Problems 70

CHAPTER 6 FACTORS THAT LIMIT DISTRIBUTIONS: INTERRELATIONS WITH OTHER SPECIES 71

- Predation 71
 - Restriction of Prey by Predators 71
 - Restriction of Predators by Prey 75

(continued)
(Chapter 6, continued)

Disease and Parasitism 77
Allelopathy 78
Competition 80

Essay 6.1 What is Competition? 82

Summary 83
Key Concepts 83
Selected References 84
Questions and Problems 84

CHAPTER 7
FACTORS THAT LIMIT DISTRIBUTIONS: TEMPERATURE, MOISTURE, AND OTHER PHYSICAL-CHEMICAL FACTORS 86

Climatology 86
Temperature and Moisture as Limiting Factors 88

Interaction Between Temperature and Moisture 91

Adaptations to Temperature and Moisture 94

Light as a Limiting Factor 97
Climate Change and Species Distributions 102

Summary 103
Key Concepts 104
Selected References 104
Questions and Problems 104

CHAPTER 8
THE RELATIONSHIP BETWEEN DISTRIBUTION AND ABUNDANCE 106

The Spatial Scale of Geographic Ranges 106
Variations in Geographic Range Size 108
Range Size and Abundance 111

Summary 113
Key Concepts 114
Selected References 114
Questions and Problems 114

PART 3
THE PROBLEM OF ABUNDANCE 115

CHAPTER 9
POPULATION PARAMETERS 116

The Population as a Unit of Study 116

Box 9.1 Definitions of Population Parameters 00

Unitary and Modular Organisms 117

Estimation of Population Parameters 119

Box 9.2 Calculation of Expected Population Density from the Regression Data Given in Table 9.1 120

Measurements of Absolute Density 120

Indices of Relative Density 125
 Natality 128
 Mortality 128
 Immigration and Emigration 129
Limitations of the Population Approach 130
Composition of Populations 130
Summary 131
Key Concepts 131
Selected References 131
Questions and Problems 132

CHAPTER 10 DEMOGRAPHIC TECHNIQUES: VITAL STATISTICS 133

Life Tables 133
 Box 10.1 Calculation of Per Capita Rates 135
Intrinsic Capacity for Increase in Numbers 138
Essay 10.1 Demographic Projections and Predictions 143
 Box 10.2 Calculation of the Intrinsic Capacity for Increase from Lotka's Characteristic Equation 145
Reproductive Value 145
Age Distributions 146
Evolution of Demographic Traits 149
Summary 154
Key Concepts 154
Selected References 154
Questions and Problems 155

CHAPTER 11 POPULATION GROWTH 157

Mathematical Theory 157
 Growth in Populations with Discrete Generations 157
 Growth in Populations with Overlapping Generations 160
 Box 11.1 What is Little-r and Why Is It So Confusing? 162
Laboratory Tests of the Logistics Theory 163
Field Data on Population Growth 164
Essay 11.1 What Is a "Good" Population Growth Model? 166
 Box 11.2 A Simple Time-Lag Model of Population Growth 168
Time-Lag Models of Population Growth 169
Stochastic Models of Population Growth 169
Population Projection Matrices 173
Summary 176
Key Concepts 176
Selected References 177
Questions and Problems 177
CHAPTER 12 SPECIES INTERACTIONS: COMPETITION 179
Classification of Species Interactions 179
Theories on Competition for Resources 180
Mathematical Model of Lotka and Volterra 180
Tilman’s Model 182
Essay 12.1 What Is a Phase Plane, and What Is an Isocline? 184
Competition in Experimental Laboratory Populations 185
Competition in Natural Populations 190
Evolution of Competitive Ability 199
Theory of r-Selection and K-Selection 199
Grime’s Theory of Plant Strategies 201
Character Displacement 201
Diffuse Competition and Indirect Effects 202
Summary 203
Key Concepts 204
Selected References 204
Questions and Problems 205

CHAPTER 13 SPECIES INTERACTIONS: PREDATION 206
Mathematical Models of Predation 207
Discrete Generations 207
Continuous Generations 209
Laboratory Studies of Predation 212
Field Studies of Predation 216
Essay 13.1 Laboratory Studies and Field Studies 217
Optimal Foraging Theory 225
Evolution of Predator-Prey Systems 228
Warning Coloration 229
Group Living 231
Summary 232
Key Concepts 232
Selected References 232
Questions and Problems 233

CHAPTER 14 SPECIES INTERACTIONS: HERBIVORY AND MUTUALISM 235
Defense Mechanisms in Plants 235
Tannins in Oak Trees 238
Ants and Acacias 239
Spines in a Marine Bryozoan 241
Spines and Thorns in Terrestrial Plants 242
Herbivores on the Serengeti Plains 242
Can Grazing Benefit Plants? 246
Essay 14.1 Herbivory, Economics, and Land Use 247
Dynamics of Herbivore Populations 248
Interactive Grazing: Ungulate Irruptions 248
Noninteractive Grazing: Finch Populations 251
CHAPTER 15 SPECIES INTERACTIONS: DISEASE AND PARASITISM 258

- Mathematical Models of Host-Disease Interaction 258
 - Compartment Models with Constant Population Size 259
 - Essay 15.1 What Is the Transmission Coefficient (β), and How Can We Measure It? 261
 - Compartment Models with Variable Population Size 262
- Box 15.1 How Can Determine R_0? A Mathematical Excursion 263
- Effects of Disease on Individuals 264
 - Effects on Reproductions 264
 - Effects on Mortality 265
- Effects of Disease on Populations 267
 - Brucellosis in Ungulates 267
 - Rabies in Wildlife 268
 - Myxomatosis in the European Rabbit 272
- Box 15.2 A Simple Rabies Model 273
- Evolution of Host-Parasite Systems 275
- Essay 15.2 What is the Red Queen Hypothesis? 276
- Summary 277
- Key Concepts 278
- Selected References 278
- Questions and Problems 279

CHAPTER 16 POPULATION REGULATION 280

- A Simple Model of Population Regulation 281
- Historical Views of Population Regulation 282
- Essay 16.1 Definitions in Population Regulation 283
- A Modern Synthesis of Population Regulation 288
- Essay 16.2 Why Is Population Regulation So Controversial? 290
- Two Approaches to Studying Population Dynamics 293
 - Key Factor Analysis 293
 - Experimental Analysis 296
- Plant Population Regulation 297
- Source and Sink Populations 299
- Evolutionary Implications of Population Regulation 300
- Summary 302
- Key Concepts 302
- Selected References 303
- Questions and Problems 303
CHAPTER 17 APPLIED PROBLEMS I: HARVESTING POPULATIONS 305
Logistic Models 307
Dynamic Pool Models 309
Laboratory Studies on Harvesting Theory 316
The Concept of Optimum Yield 318
Case Study: The King Crab Fishery 319
Case Study: The Northern Cod Fishery 321
Case Study: Antarctic Whaling 324
Risk-Aversive Management Strategies 325
Essay 17.1 Principles of Effective Resource Management 326
Box 17.1 What Are the Harvest Strategies for a Fishery? 327
Summary 328
Key Concepts 328
Selected References 328
Questions and Problems 329

CHAPTER 18 APPLIED PROBLEMS II: PEST CONTROL 331
Examples of Biological Control 333
Cottony-Cushion Scale (Icerya purchasi) 333
Prickly Pear (Opuntia spp.) 334
Floating Fern (Salvinia molesta) 336
Theory of Biological Control 337
Genetic Controls of Pests 342
Immuonocontraception 344
Integrated Control 346
Generalizations About Biological Control 349
Risks of Biological Control 351
Summary 352
Key Concepts 353
Selected References 353
Questions and Problems 353

CHAPTER 19 APPLIED PROBLEMS III: CONSERVATION BIOLOGY 355
Small-Population Paradigm 355
Minimum Viable Populations 356
Box 19.1 What Is Effective Population Size? 359
Essay 19.1 Diagnosing a Declining Population 360
The Declining-Population Paradigm 360
Overkill 361
Habitat Destruction and Fragmentation 362
Essay 19.2 Fragmentation of Habitats and Area-Sensitive Species 367
Impacts of Introduced Species 371
Chains of Extinctions 373
Reserve Design and Reserve Selection 373
Box 19.2 Recovery of Petrels After Eradication of Feral Cats on Marion Island, Indian Ocean 374
Box 19.3 An Algorithm for Choosing Reserves for a Taxonomic Group 375
PART 4 DISTRIBUTION AND ABUNDANCE
AT THE COMMUNITY LEVEL 385

CHAPTER 20 THE NATURE OF THE COMMUNITY 386
Dynamic Relations Between Populations 386
Essay 20.1 What Is the Gaia Hypothesis? 388
Community Characteristics 392
Community Boundaries? 392
Distributional Relations of Species in Communities 395
Indicator Species in Communities 398
Box 20.1 Criteria for Indicator Species 399
Summary 400
Key Concepts 401
Selected References 401
Questions and Problems 401

CHAPTER 21 COMMUNITY CHANGE 403
Primary Succession on Mount St. Helens 403
Concepts of Succession 406
A Simple Mathematical Model of Succession 409
Case Studies of Succession 412
Glacial Moraine Succession in Southeastern Alaska 413
Lake Michigan Sand-Dune Succession 416
Abandoned Farmland in North Carolina 419
The Climax State 423
Patch Dynamics 424
Summary 431
Key Concepts 431
Selected References 431
Questions and Problems 432

CHAPTER 22 COMMUNITY ORGANIZATION I: BIODIVERSITY 434
Measurement of Biodiversity 434
Essay 22.1 Biodiversity: A Brief History 436
Some Examples of Diversity Gradients 438

(continued)
Box 22.1 A Simple Model of Latitudinal Gradients in Biodiversity 443
Factors That Might Cause Diversity Gradients 443
 History Factory 444
 Spatial Heterogeneity 445
 Competition 447
 Predation 448
 Climate and Climatic Variability 450
 Productivity 452
 Disturbance 452
Local and Regional Diversity 454
Summary 456
Key Concepts 456
Selected References 457
Questions and Problems 457

CHAPTER 23 COMMUNITY ORGANIZATION II: PREDATION AND COMPETITION IN EQUILIBRIAL COMMUNITIES 459

Box 23.1 Measuring Community Importance 461
Food Chains and Trophic Levels 463
Essay 23.1 Use of Stable Isotopes to Analyze Food Chains 466
Functional Roles and Guilds 469
Keystone Species 471
Dominant Species 474
Essay 23.2 Fishing Down Food Webs 477
Community Stability 477
Restoration Ecology 480
Summary 482
Key Concepts 483
Selected References 483
Questions and Problems 484

CHAPTER 24 COMMUNITY ORGANIZATION III: DISTURBANCE AND NONEQUILIBRIUM COMMUNITIES 485

Patches and Disturbance 485
The Role of Disturbance in Communities 486
 Coral Reef Communities 486
Essay 24.1 Why Are Corals Bleaching? 489
 Rocky Intertidal Communities 491
Theoretical Nonequilibrium Models 492
Conceptual Models of Community Organization 495
Essay 24.2 Biomanipulation of Lakes 499
The Special Case of Island Species 501
Box 24.1 Measuring Immigration and Extinction Rates 507
Multiple Stable States in Communities 508
Summary 509
Key Concepts 510
Selected References 510
Questions and Problems 511
CHAPTER 25 ECO SYSTEM METABOLISM I: PRIMARY PRODUCTION 513

Primary Production 515
Factors That Limit Primary Productivity 517
 Aquatic Communities 518
 Marine Communities 518
 Freshwater Communities 523
Essay 25.1 Nutrient Ratios and Phytoplankton 526
 Terrestrial Communities 527
Box 25.1 Estimating Primary Production from Satellite Data 528
Essay 25.2 Why Does Primary Production Decline with Age in Trees? 532
Plant Diversity and Productivity 533
Summary 534
Key Concepts 534
Selected References 535
Questions and Problems 535

CHAPTER 26 ECO SYSTEM METABOLISM II: SECONDARY PRODUCTION 537

Measure of Secondary Production 537
Box 26.1 Estimating Energy Expenditure with Doubly Labeled Water 540
Essay 26.1 Thermodynamics and Ecology 543
Problems in Estimating Secondary Production 544
Ecological Efficiencies 544
What Limits Secondary Production? 549
 Grassland Ecosystems 549
Essay 26.2 Why Is the World Green? 551
 Game Ranching in Africa 554
Sustainable Energy Budgets 556
Summary 557
Key Concepts 557
Selected References 558
Questions and Problems 558

CHAPTER 27 ECO SYSTEM METABOLISM III: NUTRIENT CYCLES 560

Nutrient Pools and Exchanges 560
Nutrient Cycles in Forests 562
Box 27.1 Estimating Turnover Time for Nutrients 564
Efficiency of Nutrient Use 568
Acid Rain: The Sulfur Cycle 572
Essay 27.1 Acid Rain and the Sudbury Experience 575
The Nitrogen Cycle 576
Summary 580
Key Concepts 581
Selected References 581
Questions and Problems 582

CHAPTER 28 ECO SYSTEM HEALTH: HUMAN IMPACTS 583

Human Population Growth 583
 Current Patterns of Population Growth 584
(continued)
Box 28.1 How Large Is a Billion Anyway? 585
Carrying Capacity of the Earth 586
Essay 28.1 The Demographic Transition: An Evolutionary Dilemma 587
Box 28.2 How to Calculate an Ecological Footprint 589
The Carbon Cycle 590
Individual Plant Responses to CO$_2$ 593
 Plant Community Responses to CO$_2$ 594
Climate Change 596
Essay 28.2 El Niño and the Southern Oscillation 598
Changes in Land Use 600
Biotic Invasions and Species Ranges 601
Ecosystem Services 603
Box 28.3 How Is Biodiversity Related to Ecosystem Function? 604
Essay 28.3 On Corals and Climate Change 605
Essay 28.4 Economics of Ecosystem Services 606
Summary 606
Key Concepts 607
Selected References 607
Questions and Problems 608

EPILOGUE 609

APPENDIX I A Primer on Population Genetics 610

APPENDIX II Estimation of the Size of the Marked Population in Capture-Recapture Studies 612

APPENDIX III Instantaneous and Finite Rates 614

APPENDIX IV Species Diversity Measures of Heterogeneity 617

GLOSSARY 619

BIBLIOGRAPHY 623

CREDITS 664

SPECIES INDEX 673

SUBJECT INDEX 680